结构及基因多态性对他汀类药物药动学的影响

张丹, 崔刚, 张相林

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (1) : 6-9.

PDF(1326 KB)
PDF(1326 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (1) : 6-9. DOI: 10.11669/cpj.2018.01.002
综 述

结构及基因多态性对他汀类药物药动学的影响

  • 张丹, 崔刚, 张相林*
作者信息 +

Structure and Gene Polymorphism Affect the Metabolism of Statins

  • ZHANG Dan, CUI Gang, ZHANG Xiang-lin*
Author information +
文章历史 +

摘要

他汀类药物是临床中治疗高胆固醇血症的一线药物。研究发现,不同的化学结构影响他汀类药物体内转运代谢的方式。化学结构的不同导致他汀药物的疏水性产生差异,从而影响药物体内的膜转运程度及组织亲和力,影响药物的体内吸收程度及在重要脏器的分布。他汀类药物的体内代谢主要与药物代谢酶相关,基因多态性影响药物代谢酶的活性及代谢能力。不同基因型对他汀类药物的体内代谢过程及降脂疗效可产生较大程度的影响。笔者从他汀类药物的结构出发,总结药物代谢酶尤其是肝药酶及膜转运体蛋白的基因多态性对他汀类药物体内代谢的影响,为更精准的使用他汀类药物,规避临床用药风险提供参考。

Abstract

Statins are the main drugs for high cholesterol. The different chemical structures affect the metabolize way of statins. Different chemical structures of statins lead to differences in hydrophobicity and affect the degree of membrane transport and tissue affinity. The differences in hydrophobicity may influence the absorption of statins and the distribution in important organs. The metabolism of statins in vivo is mainly related to drug metabolizing enzymes. Gene polymorphism affects the activity and capacity of enzymes and may influence the lipid-lowering effect of statins. This paper reviews the transshipment and metabolic characteristics of statins. We summarize the gene polymorphism on the effect of drug metabolism and conduct the clinical prescription.

关键词

他汀类药物 / 化学结构 / 基因多态性 / 药动学

Key words

statin drug / chemical structure / gene polymorphism / pharmacokinetics

引用本文

导出引用
张丹, 崔刚, 张相林. 结构及基因多态性对他汀类药物药动学的影响[J]. 中国药学杂志, 2018, 53(1): 6-9 https://doi.org/10.11669/cpj.2018.01.002
ZHANG Dan, CUI Gang, ZHANG Xiang-lin. Structure and Gene Polymorphism Affect the Metabolism of Statins[J]. Chinese Pharmaceutical Journal, 2018, 53(1): 6-9 https://doi.org/10.11669/cpj.2018.01.002
中图分类号: R969.1   

参考文献

[1] WHIRL C, MCDONAGH E, HEBERT J,et al. Pharmacogenomics knowledge for personalized medicine[J]. Clin Pharm Ther, 2012, 92(4):414-417.
[2] CATALÃO C, SANTOS J, COSTA L A, et al. Brain oxidative stress during experimental sepsis is attenuated by simvastatin administration[J]. Mol Neurobiol, 2017:54(9):7008-7018.
[3] GRUETZ M, STICHT H, GLAESER H, et al. Analysis of amino acid residues in the predicted transmembrane pore influencing transport kinetics of the hepatic drug transporter organic anion transporting polypeptide 1B1 (OATP1B1)[J]. Biochimica Biophys Acta Biomembr, 2016, 1858(11):2894-2902.
[4] GEBOERS S, STAPPAERTS J, TACK J, et al. In vitro and in vivo investigation of the gastrointestinal behavior of simvastatin[J]. Int J Pharm, 2016, 510(1):296-303.
[5] CUI H, WANG J, ZHANG Q, et al. In vivo and in vitro study on drug-drug interaction of lovastatin and berberine from pharmacokinetic and HepG2 cell metabolism studies[J]. Mol, 2016, 21(4):464.
[6] BOLEGO C, BAETTA R, BELLOSTA S, et al. Safety considerations for statins[J]. Curr Opin Lipidol, 2002, 13(6):637-644.
[7] LUZUM J, THEUSCH E, TAYLOR K, et al. Individual and combined associations of genetic variants in CYP3A4, CYP3A5, and SLCO1B1 with simvastatin and simvastatin acid plasma concentrations[J]. J Card Pharm, 2015, 66(1):80-85.
[8] NAN S, HU M, LIU C, et al. Decreased exposure of atorvastatin in diabetic rats partly due to induction of hepatic Cyp3a and Oatp2[J]. Xenobiotica, 2016, 46(10):875-881.
[9] ZHOU Q, RUAN Z, YUAN H, et al. CYP2C9*3(1075A>C), MDR1 G2677T/A and MDR1 C3435T are determinants of inter-subject variability in fluvastatin pharmacokinetics in healthy Chinese volunteers[J]. Arzneimittelforschung, 2012, 62(11):519-524.
[10] KADAM P, ASHAVAID T, PONDE C, et al. Genetic determinants of lipid-lowering response to atorvastatin therapy in an indian population[J]. J Clin Pharm Ther,2016, 41(3):329-333.
[11] CANESTARO W, AUSTIN M, THUMMEL K. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review[J]. Genet Med J Am College Med Genet, 2014, 16(11):810-819.
[12] BACKMAN J, FILPPULA A, NIEMI M, et al. Role of cytochrome P450 2C8 in drug metabolism and interactions[J]. Pharmacol Rev, 2016, 68(1):168-241.
[13] CHOI H, BAE K, CHO S, et al. Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid[J]. Pharm Genomics, 2015, 25(12):595-608.
[14] CHOI C, LEE Y, LEE H, et al. Effects of the SLCO1B1*15 allele on the pharmacokinetics of pitavastatin[J]. Xenobiotica, 2012, 42(5):496-501.
[15] ZHU J, SONG M, TAN H, et al. Effect of pitavastatin in different SLCO1B1 backgrounds on repaglinide pharmacokinetics and pharmacodynamics in healthy Chinese males[J]. Pakistan J Pharm Sci, 2013, 26(26):577-584.
[16] HU M, MAK V, YIN Q, et al. Effects of grapefruit juice and SLCO1B1 388A>G polymorphism on the pharmacokinetics of pitavastatin[J]. Drug Metab Pharmacokinet, 2013, 28(2):104-108.
[17] ARRIGONI E, RE M, FIDILIO L, et al. Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins[J]. Inter J Mol Sci, 2017, 18(1):104.
[18] WAN Z, WANG G, LI T, et al. Marked alternation of rosuvastatin pharmacokinetics in healthy Chinese with ABCG2 34G>A and 421C>A homozygote or compound heterozygote[J]. J Pharm Exp Ther, 2015, 354(3):310-315.
[19] LEE H K, HU M, LUI S, et al. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients[J]. Pharmacogenomics, 2016, 14(11):1283-1294.
[20] MIROŠEVIC S, MACOLIC ŠARINIC V, ŠIMIC I, et al. ABCG2 gene polymorphisms as risk factors for atorvastatin adverse reactions: a case-control study[J]. Pharmacogenomics, 2015, 16(8):803-815.
[21] LI Q, HONG J, WU J, et al. The role of common variants of ABCB1 and CYP7A1 genes in serum lipid levels and lipid-lowering efficacy of statin treatment: a Meta-analysis[J]. J Clin Lipidol,2014, 8(6):618-629.
[22] SU J, XU H, YANG J, et al. ABCB1 C3435T polymorphism and the lipid-lowering response in hypercholesterolemic patients on statins: a Meta-analysis[J]. Lipids Health Dis, 2015, 14(1):1-10.
[23] THOMPSON J, MAN M, JOHNSON K, et al. An asso-ciation study of 43 SNPs in 16 candidate genes with atorvastatin response[J]. Pharmacogenomics J, 2005,5(6):352-358.
[24] RODRIGUES A, NERI E, VERíSSIMO-FILHO S, et al. Atorvastatin attenuation of ABCB1 expression is mediated by microRNA miR-491-3p in Caco-2 cells[J]. Eur J Pharm Sci,2016,10(93):431-436.

基金

国家自然科学基金青年基金资助项目(81503339)
PDF(1326 KB)

Accesses

Citation

Detail

段落导航
相关文章

/